ISSN 1991-2927
 

АПУ № 1 (55) 2019

Автор: "Ковальногов Владислав Николаевич"

УДК 621.1.016+532.526

Ковальногов Владислав Николаевич, Ульяновский государственный технический университет, доктор технических наук, окончил Казанский государственный университет, заведующий кафедрой «Тепловая и топливная энергетика» Ульяновского государственного технического университета. Имеет статьи, монографии и изобретения в области моделирования, исследования и оптимизации тепловых и гидрогазодинамических процессов в энергоустановках и технологическом оборудовании. [e-mail: kvn@ulstu.ru]В.Н. Ковальногов,

Федоров Руслан Владимирович, Ульяновский государственный технический университет, кандидат технических наук, окончил УлГТУ, доцент кафедры «Тепловая и топливная энергетика» УлГТУ. Имеет статьи и изобретения в области численного моделирования гидрогазодинамических процессов. [e-mail: r.fedorov@ulstu.ru]Р.В. Федоров,

Хахалева Лариса Валерьевна, Ульяновский государственный технический университет, кандидат технических наук, окончила УлГТУ, доцент кафедры «Тепловая и топливная энергетика» УлГТУ. Имеет статьи и изобретения в области численного моделирования гидрогазодинамических процессов. [e-mail: larvall@mail.ru]Л.В. Хахалева,

Чукалин Андрей Валентинович, Ульяновский государственный технический университет, окончил УлГТУ, аспирант кафедры «Тепловая и топливная энергетика» УлГТУ. Имеет статьи в области численного моделирования гидрогазодинамических процессов. [e-mail: chukalin.andrej@mail.ru]А.В. Чукалин

Математическое моделирование и численный анализ эффективности тепловой защиты с применением полусферических демпфирующих полостей54_10.pdf

Повышение производительности газотурбинного двигателя (ГТД) неразрывно связано с увеличением интенсивности динамических, аэромеханических и тепловых процессов, что в свою очередь требует разработки систем и устройств, позволяющих защитить наиболее нагруженные элементы оборудования. Наиболее эффективными способами защиты от перегрева поверхностей являются: конвективное охлаждение; поглощение и накопление тепла конденсированными веществами; охлаждение, функционирующее на массообменном принципе; радиационное и электромагнитное охлаждение; теплозащитные покрытия. Одним из наиболее эффективных способов защиты поверхностей от перегрева является тепловая защита в виде плёночного охлаждения поверхности, основанная на массообменном принципе охлаждения поверхности. данный способ широко распространён и давно доказал свою эффективность. В работе рассмотрена возможность совершенствования данного способа охлаждения за счёт воздействия на пограничный слой полусферическими демпфирующими полостями за участком вдува охладителя. В работе предложена математическая модель и проведено численное исследование эффективности тепловой защиты с применением полусферических демпфирующих полостей. Установлена возможность существенного снижения турбулентного теплообмена в пограничном слое и повышения эффективности тепловой защиты поверхности Θ на 0,06 за счёт применения полусферических демпфирующих полостей. Предложенный способ интенсификации тепловой защиты и численный анализ её эффективности позволят усовершенствовать ГТД, применяемые в разных областях промышленности нашей страны, таких как: энергетика, авиастроение, судостроение.

Полусферические демпфирующие полости, турбулентный перенос, математическое моделирование, пограничный слой, тепловая защита.

2018_ 4

Рубрика: Математическое моделирование

Тематика: Математическое моделирование.


УДК 621.1.016+532.526

Ковальногов Владислав Николаевич, Ульяновский государственный технический университет, доктор технических наук, заведующий кафедрой «Тепловая и топливная энергетика» Ульяновского государственного технического университета, окончил Казанский государственный университет. Имеет статьи, монографии и изобретения в области моделирования, исследования и оптимизации тепловых и гидрогазодинамических процессов в энергоустановках и технологическом оборудовании. [e-mail: kvn@ulstu.ru]В.Н. Ковальногов,

Генералов Дмитрий Александрович, Ульяновский государственный технический университет , старший преподаватель кафедры «Тепловая и топливная энергетика» УлГТУ, окончил УлГТУ. Имеет статьи и изобретения в области численного моделирования гидрогазодинамических процессов. [e-mail: dmgeneralov@mail.ru]Д.А. Генералов,

Чукалин Андрей Валентинович, Ульяновский государственный технический университет , аспирант кафедры «Тепловая и топливная энергетика» УлГТУ, окончил УлГТУ. Имеет статьи в области численного моделирования гидрогазодинамических процессов. [e-mail: chukalin.andrej@mail.ru]А.В. Чукалин,

Федоров Руслан Владимирович, Ульяновский государственный технический университет , кандидат технических наук, доцент кафедры «Тепловая и топливная энергетика» УлГТУ, окончил УлГТУ. Имеет статьи, монографии и изобретения в области численного моделирования гидрогазодинамических процессов. [e-mail: r.fedorov@ulstu.ru]Р.В. Федоров,

Плеханова Анна Алексеевна, Ульяновский государственный технический университет , студентка 4 курса направления «Теплоэнергетика и теплотехника» энергетического факультета УлГТУ. Имеет статьи в области численного моделирования гидрогазодинамических процессов. [e-mail: nyutka73@mail.ru]А.А. Плеханова

Новые технические решения на основе математического моделирования лопаточного аппарата турбомашин000_6.pdf

Приведены способ исследования теплового состояния лопаток турбомашин, методика численного исследования с учетом феномена газодинамической температурной стратификации. рассматриваются возможность повышения эффективности охлаждения турбинных лопаток благодаря использованию феномена газодинамической температурной стратификации, возможность повышения точности расчетного прогнозирования теплового состояния лопаток за счет получения достоверных данных путем разработки математической модели и уникального программноинформационного комплекса для моделирования.

Математическое моделирование, численные методы, тепловая защита, пленочное охлаждение, программно-информационный комплекс, дисперсный поток.

2017_ 3

Рубрика: Математическое моделирование

Тематика: Математическое моделирование.


УДК 621.1.016+532.526

Ковальногов Владислав Николаевич, Ульяновский государственный технический университет, доктор технических наук, заведующий кафедрой «Тепловая и топливная энергетика» Ульяновского государственного технического университета, окончил Казанский государственный университет. Имеет статьи, монографии и изобретения в области моделирования, исследования и оптимизации тепловых и гидрогазодинамических процессов в энергоустановках и технологическом оборудовании. [e-mail: kvn@ulstu.ru]В.Н. Ковальногов,

Чукалин Андрей Валентинович, Ульяновский государственный технический университет, аспирант кафедры «Тепловая и топливная энергетика» УлГТУ, окончил УлГТУ. Имеет статьи в области численного моделирования гидрогазодинамических процессов. [e-mail: chukalin.andrej@mail.ru]А.В. Чукалин,

Хахалева Лариса Валерьевна, Ульяновский государственный технический университет, кандидат технических наук, доцент кафедры «Тепловая и топливная энергетика» УлГТУ, окончила УлГТУ. Имеет статьи и изобретения в области численного моделирования гидрогазодинамических процессов. [e-mail: larvall@mail.ru]Л.В. Хахалева,

Федоров Руслан Владимирович, Ульяновский государственный технический университет, кандидат технических наук, доцент кафедры «Тепловая и топливная энергетика» УлГТУ, окончил УлГТУ. Имеет статьи, монографии и изобретения в области численного моделирования гидрогазодинамических процессов. [e-mail: r.fedorov@ulstu.ru]Р.В. Федоров,

Плеханова Анна Алексеевна, Ульяновский государственный технический университет, студентка 3 курса направления «Теплоэнергетика и теплотехника» энергетического факультета УлГТУ [e-mail: nyutka73@mail.ru]А.А. Плеханова

Исследование влияния количества демпфирующих полостей на сопротивление трения турбулентного потока000_5.pdf

В результате экспериментального и численного исследования турбулентного потока с воздействиями на основе модифицированной модели пути смешения Прандтля с использованием анализа пульсаций давления, произведен расчет структуры и сопротивления трения турбулентного потока. разработанные модель турбулентного обмена и метод расчета позволяют адекватно учесть особенности обменных процессов при наличии демпфирующих полостей и прогнозировать сопротивление трения с помощью предварительного расчета. Экспериментально установлена возможность снижения коэффициента сопротивления трения турбулентного потока с помощью демпфирующих полостей до 35%. Выполнено обобщение влияния количества демпфирующих полостей на сопротивление трения.

Демпфирующие полости, математическое моделирование, сопротивление трения, турбулентный поток.

2017_ 1

Рубрика: Математическое моделирование

Тематика: Математическое моделирование, Системы автоматизации проектирования .


УДК 533.6.011.6

Золотов Александр Николаевич , Ульяновский государственный технический университет, аспирант кафедры «Теплоэнергетика» Ульяновского государственного технического университета. Окончил УлГТУ. Имеет статьи в области численного моделирования гидрогазодинамических процессов. [e-mail: anzolotov@bk.ru]А.Н. Золотов,

Ковальногов Владислав Николаевич , Ульяновский государственный технический университет, доктор технических наук, заведующий кафедрой «Теплоэнергетика» УлГТУ. Имеет статьи, монографии и изобретения в области моделирования, исследования и оптимизации тепловых и гидрогазодинамических процессов в энергоустановках и технологическом оборудовании. [e-mail: kvn@ulstu.ru]В.Н. Ковальногов,

Корнилова Мария Игоревна , Ульяновский государственный технический университет, студентка 2 курса УлГТУ. Имеет статьи в области численного моделирования гидрогазодинамических процессов. [e-mail: masha.kornilova.1995@mail.ru]М.И. Корнилова

Моделирование и исследование технологии тепловой защиты лопаточного аппарата турбомашин с использованием газодинамической температурной стратификации000_12.pdf

Повышение начальной температуры и давления рабочего тела -один из наиболее простых и эффективных путей улучшения топливной экономичности и снижения металлоемкости турбин. Традиционная технология производства лопаток турбин является весьма дорогостоящей и занимает много времени на подготовку производства. Поэтому их создание требует использования математических моделей, которые выступают инструментом для анализа, совершенствования и поиска наиболее перспективных решений способов охлаждения и увеличения точности прогнозирования на стадии проектирования их эффективности. Математическое моделирование теплового состояния широко применяется при создании современных газотурбинных установок [1]. Важной задачей остается численное моделирование пространственного течения теплообмена в дозвуковых и трансзвуковых решетках. Для создания эффективных способов тепловой защиты необходимо знать распределение нестационарных температурных полей по поверхности и в теле лопатки. Для этого необходимо максимально точно определить тепловые потоки от газа к лопаткам с учетом воздействия режима течения потока, неизотермичности, градиента давления и прочих факторов [2]. В данной работе предложена математическая модель и методика численного исследования теплового состояния лопаток турбомашин, обтекаемых сверхзвуковым дисперсным потоком с учетом феномена газодинамической температурной стратификации. С целью повышения точности расчетного прогнозирования теплового состояния лопаток за счет получения достоверных данных, а также повышения эффективности систем охлаждения для увеличения ресурса лопаток в настоящее время разрабатывается программно-информационный комплекс, который будет учитывать результаты исследований газодинамических процессов в высокоскоростных дисперсных потоках, в том числе феномен газодинамической температурной стратификации, выполняемых на кафедре «Теплоэнергетика» УлГТУ.

Математическое моделирование, численные методы, тепловая защита, конвективно-пленочное охлаждение, программно-информационный комплекс, дисперсный поток, газодинамическая температурная стратификация.

2015_ 4

Рубрика: Математическое моделирование

Тематика: Математическое моделирование, Системы автоматизации проектирования .


УДК 621.1.016+532.526

Ковальногов Владислав Николаевич, Ульяновский государственный технический университет, доктор технических наук, заведующий кафедрой «Теплоэнергетика» Ульяновского государственного технического университета. Имеет статьи, монографии и изобретения в области моделирования, исследования и оптимизации тепловых и гидрогазодинамических процессов в энергоустановках и технологическом оборудовании. [e-mail: kvn@ulstu.ru]В.Н. Ковальногов,

Федоров Руслан Владимирович , Ульяновский государственный технический университет, кандидат технических наук, доцент кафедры «Теплоэнергетика» УлГТУ. Имеет статьи и изобретения в области численного моделирования гидрогазодинамических процессов. [e-mail: r.fedorov@ulstu.ru]Р.В. Федоров,

Хахалева Лариса Валерьевна, Ульяновский государственный технический университет, кандидат технических наук, доцент кафедры «Теплоэнергетика» УлГТУ. Имеет статьи и изобретения в области численного моделирования гидрогазодинамических процессов. [e-mail: larvall@mail.ru]Л.В. Хахалева,

Чукалин Андрей Валентинович , Ульяновский государственный технический университет, аспирант кафедры «Теплоэнергетика» УлГТУ. Имеет статьи в области численного моделирования гидрогазодинамических процессов. [e-mail: chukalin.andrej@mail.ru]А.В. Чукалин

Математическое моделирование и численный анализ ламинаризации течения в перфорированной трубе с демпфирующими полостями000_13.pdf

Экспериментально установлена возможность частичной ламинаризации турбулентного потока в перфорированной трубе с демпфирующими полостями, приводящей к уменьшению до 35% коэффициента сопротивления трения. Выявлено влияние количества перфорационных отверстий в демпфирующей полости на профиль скорости и сопротивление трения. Предложены модель турбулентного переноса в пограничном слое около перфорированной поверхности с демпфирующими полостями и метод расчета структуры потока и сопротивления трения. Ламинаризация течения, проявляющаяся в снижении интенсивности турбулентного переноса в пограничном слое, обусловленном внешними или внутренними воздействиями, играет важную роль в технике. По-видимому, впервые на возможность обратного перехода турбулентного течения в ламинарное (ламинаризации) под воздействием продольного отрицательного градиента давления указано в работе [1]. Дальнейшие исследования, обзор которых приведен в [2], показал, что ламинаризация в потоках с продольным отрицательным градиентом давления сопровождается существенным (до 35 … 50%) снижением интенсивности теплоотдачи и одновременным возрастанием сопротивления трения. Предложенная в работе [2] модель ламинаризации в потоках с различными воздействиями позволила предсказать возможность ее реализации и около перфорированных поверхностей с демпфирующими полостями. При этом, в отличие от ламинаризации под воздействием продольного отрицательного градиента давления, здесь должно иметь место уменьшение как интенсивности теплоотдачи, так и сопротивления трения. Цель настоящей работы - экспериментальное исследование сопротивления трения в перфорированной трубе с демпфирующими полостями, имеющими разное число перфорационных отверстий, разработка модели процессов турбулентного переноса и метода расчета сопротивления трения.

Перфорированная труба, демпфирующие полости, турбулентный перенос, математическое моделирование, сопротивление трения, пограничный слой.

2015_ 4

Рубрика: Математическое моделирование

Тематика: Математическое моделирование.


УДК 533.6.011.6


Ковальногов Владислав Николаевич, Ульяновский государственный технический университет, доктор технических наук, окончил факультет вычислительной математики и кибернетики Казанского государственного университета, заведующий кафедрой «Теплоэнергетика» Ульяновского государственного технического университета. Имеет статьи, монографии и изобретения в области моделирования, исследования и оптимизации тепловых и гидрогазодинамических процессов в энергоустановках и технологическом оборудовании [e-mail: kvn@ulstu.ru]В.Н. Ковальногов,

Федоров Руслан Владимирович, Ульяновский государственный технический университет, кандидат технических наук, окончил энергетический факультет Ульяновского государственного технического университета, доцент кафедры «Теплоэнергетика» УлГТУ. Имеет статьи, монографию и изобретения в области моделирования и исследования газодинамики высокоскоростных дисперсных потоков [e-mail: r.fedorov@ulstu.ru]Р.В. Федоров,

Цветова Екатерина Владимировна, Ульяновский государственный технический университет, окончила энергетический факультет Ульяновского государственного технического университета, аспирант кафедры «Теплоэнергетика» УлГТУ. Имеет статьи и разработки в области газодинамики и теплообмена [e-mail: katf0k@mail.ru]Е.В. Цветова,

Петров Антон Вячеславович, Ульяновский государственный технический университет, студент энергетического факультета УлГТУ. Имеет статьи и разработки в области газодинамики и теплообмена [e-mail: Antonio-petrik2@mail.ru]А.В. Петров

Математическое моделирование и исследование эффективности газодинамической температурной стратификации в дисперсном потоке31_7.pdf

Приведены методика и результаты численного исследования процесса газодинамической температурной стратификации дисперсного потока. Обоснована возможность существенного повышения эффективности температурной стратификации дисперсного потока посредством поверхностных интенсификаторов теплоотдачи, выполненных на рабочей поверхности тракта дозвукового течения.

Газодинамическая температурная стратификация, дисперсный поток, сверхзвуковой поток, интенсификация теплоотдачи.

2013_ 1

Рубрика: Математическое моделирование, численные методы и комплексы программ

Тематика: Математическое моделирование.


УДК 533.6.011.6


Ковальногов Владислав Николаевич, Ульяновский государственный технический университет, доктор технических наук, окончил факультет вычислительной математики и кибернетики Казанского государственного университета, заведующий кафедрой «Теплоэнергетика» Ульяновского государственного технического университета. Имеет статьи, монографии, изобретения в области моделирования, исследования и оптимизации гидрогазодинамических процессов [e-mail: kvn@ulstu.ru]В.Н. Ковальногов,

Хахалев Юрий Андреевич, Ульяновский государственный технический университет, окончил энергетический факультет УлГТУ, аспирант кафедры «Теплоэнергетика» УлГТУ. Имеет статьи и разработки в области исследования гидрогазодинамических процессов [e-mail: ulstu-td-ua@mail.ru]Ю.А. Хахалев

Математическое моделирование турбулентного потока с воздействиями на основе анализа фрактальной размерности пульсаций давления31_8.pdf

На основе теоретико-экспериментального исследования определена фрактальная размерность турбулентных пульсаций давления и предложена математическая модель турбулентности на основе фрактальных характеристик пульсаций.

Пограничный слой, пульсации давления, турбулентный поток, модель, хаос, фрактальные характеристики.

2013_ 1

Рубрика: Математическое моделирование, численные методы и комплексы программ

Тематика: Математическое моделирование.


УДК 533.6.011.6


Ковальногов Владислав Николаевич, Ульяновский государственный технический университет, доктор технических наук, заведующий кафедрой «Теплоэнергетика» Ульяновского государственного технического университета. Имеет статьи, монографии, изобретения в области численного моделирования гидрогазодинамических процессов [e-mail: kvn@ulstu.ru]В.Н. Ковальногов,

Королев Алексей Владимирович, УлГТУ, аспирант кафедры «Теплоэнергетика» УлГТУ. Имеет статьи и изобретения в области численного моделирования гидрогазодинамических процессов [e-mail: korolev86@inbox.ru]А.В. Королев,

Федоров Руслан Владимирович, УлГТУ, кандидат технических наук, доцент кафедры «Теплоэнергетика» УлГТУ. Имеет статьи и изобретения в области численного моделирования гидрогазодинамических процессов [e-mail: r.fedorov@ulstu.ru]Р.В. Федоров

Математическое моделирование и численный анализ эффективности пленочного охлаждения поверхности, обтекаемой сверхзвуковым дисперсным потоком с воздействиями30_4.pdf

Предложена математическая модель и приведены результаты численного исследования влияния инерционного выпадения частиц конденсированной фазы на эффективность пленочного охлаждения поверхности, обтекаемой сверхзвуковым дисперсным потоком. Установлена возможность реализации парадокса академика А.И. Леонтьева на адиабатном участке поверхности, заключающегося в достижении температуры защищаемой поверхности, меньшей, чем температура охладителя на проницаемом участке формирования завесы.

Пограничный слой, тепловая завеса, дисперсный поток, моделирование.

2012_ 4

Рубрика: Математическое моделирование, численные методы и комплексы программ

Тематика: Математическое моделирование.


© ФНПЦ АО "НПО "Марс", 2009-2018 Работает на Joomla!